白藜芦醇抑制小胶质细胞激活在神经炎症中的研究进展

黄南渠, 金海, 石京山, 金凤

中国药学杂志 ›› 2018, Vol. 53 ›› Issue (2) : 85-91.

PDF(1378 KB)
PDF(1378 KB)
中国药学杂志 ›› 2018, Vol. 53 ›› Issue (2) : 85-91. DOI: 10.11669/cpj.2018.02.001
资源与鉴定

白藜芦醇抑制小胶质细胞激活在神经炎症中的研究进展

  • 黄南渠1a,2, 金海1b,c, 石京山1a, 金凤1a*
作者信息 +

Research Progress of Resveratrol Inhibiting Microglial Activation in Neuroinflammation

  • HUANG Nan-qu1a,2, JIN Hai1b,c, SHI Jing-shan1a, JIN Feng1a*
Author information +
文章历史 +

摘要

神经炎症与诸多神经退行性疾病密切相关,小胶质细胞(microglia,MG)是重要参与者之一,其在生理病理状态下均发挥重要作用。因此,抑制MG的过度激活是控制神经炎症潜在的药物靶点。近年研究发现白藜芦醇(resveratrol,Res)对神经退行性疾病的保护作用与其抑制MG激活调控神经炎症有关,笔者对其可能的机制进行综述。

Abstract

Many neurodegenerative diseases are closely linked with neuroinflammation, microglia is one of the important participants, which plays an important role in physiological and pathological states. Therefore, inhibiting the excessive activation of microglia will be the potential drug targets of control neuroinflammation. Recent studies have found resveratrol in the central nervous system have a neuroprotective effect, which related to the inhibition of microglia activation and control of neuroinflammation. In this study, its possible mechanisms will be reviewed.

关键词

白藜芦醇 / 小胶质细胞 / 神经炎症

Key words

resveratrol / microglia / neuroinflammation

引用本文

导出引用
黄南渠, 金海, 石京山, 金凤. 白藜芦醇抑制小胶质细胞激活在神经炎症中的研究进展[J]. 中国药学杂志, 2018, 53(2): 85-91 https://doi.org/10.11669/cpj.2018.02.001
HUANG Nan-qu, JIN Hai, SHI Jing-shan, JIN Feng. Research Progress of Resveratrol Inhibiting Microglial Activation in Neuroinflammation[J]. Chinese Pharmaceutical Journal, 2018, 53(2): 85-91 https://doi.org/10.11669/cpj.2018.02.001
中图分类号: R971   

参考文献

[1] KAUR G, HAN S J, YANG I, et al. Microglia and central nervous system immunity [J]. Neurosurg Clin North Am, 2010, 21(1): 43-51.
[2] GOLDMANN T, PRINZ M. Role of microglia in CNS autoimmunity [J]. Clin Develop Immunol, 2013, 2013(2): 208093.
[3] KETTENMANN H, HANISCH U K, NODA M, et al. Physiology of microglia [J]. Physiol Rev, 2011, 91(2): 461-553.
[4] NIMMERJAHN A, KIRCHHOFF F, HELMCHEN F. Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo [J]. Science, 2005, 308(5726): 1314-1318.
[5] SALTER M W, BEGGS S. Sublime microglia: expanding roles for the guardians of the CNS [J]. Cell, 2014, 158(1): 15-24.
[6] BEGGS S, SALTER M W. SnapShot: microglia in disease [J]. Cell, 2016, 165(5): 1294-1294.e1. doi: 10.1016/j.cell.2016.05.036.
[7] DEIERBORG T, ROYBON L, INACIO A R, et al. Brain injury activates microglia that induce neural stem cell proliferation ex vivo and promote differentiation of neurosphere-derived cells into neurons and oligodendrocytes [J]. Neuroscience, 2010, 171(4): 1386-1396.
[8] EIKELENBOOM P, STAM F C. Immunoglobulins and complement factors in senile plaques. An immunoperoxidase study [J]. Acta Neuropathol, 1982, 57(2-3): 239-242.
[9] MCGEER P L, ITAGAKI S, TAGO H, et al. Reactive microglia in patients with senile dementia of the Alzheimer type are positive for the histocompatibility glycoprotein HLA-DR [J]. Neurosci Lett, 1987, 79(1-2): 195-200.
[10] BHASKAR K, KONERTH M, KOKIKO-COCHRAN O N, et al. Regulation of tau pathology by the microglial fractalkine receptor [J]. Neuron, 2010, 68(1): 19-31.
[11] BAMBERGER M E, HARRIS M E, MCDONALD D R, et al. A cell surface receptor complex for fibrillar beta-amyloid mediates microglial activation [J]. J Neurosci, 2003, 23(7): 2665-2674.
[12] STEWART C R, STUART L M, WILKINSON K, et al. CD36 ligands promote sterile inflammation through assembly of a Toll-like receptor 4 and 6 heterodimer [J]. Nat Immunol, 2010, 11(2): 155-161.
[13] HICKMAN S E, ALLISON E K, EL KHOURY J. Microglial dysfunction and defective beta-amyloid clearance pathways in aging Alzheimer′s disease mice [J]. J Neurosci, 2008, 28(33): 8354-8360.
[14] HUANG N Q, HAI J, ZHOU S Y, et al. TLR4 is a link between diabetes and Alzheimer′s disease [J]. Behav Brain Res, 2017, 316:234-244.
[15] STEINER N, BALEZ R, KARUNAWEERA N, et al. Neuroprotection of Neuro2a cells and the cytokine suppressive and anti-inflammatory mode of action of resveratrol in activated RAW264.7 macrophages and C8-B4 microglia [J]. Neurochem Int, 2016, 95(10):46-54.
[16] FAHN S. Description of Parkinson′s disease as a clinical syndrome [J]. Annals New York Acad Sci, 2003, 991(1):1-14.
[17] ZHANG F, LIU J, SHI J S. Anti-inflammatory activities of resveratrol in the brain: role of resveratrol in microglial activation [J]. Eur J Pharmacol, 2010, 636(1-3): 1-7.
[18] WANG Q, LIU Y, ZHOU J. Neuroinflammation in Parkinson′s disease and its potential as therapeutic target [J]. Transl Neurodegen, 2015, 4(19). doi: 10.1186/s40035-015-0042-0.
[19] TRAPP B D, NAVE K A. Multiple sclerosis: an immune or neurodegenerative disorder? [J]. Annual Rev Neurosci, 2008, 31(1):247-269. doi: 10. 1146/annurev. neuro. 30. 051606. 094313.
[20] MCMURRAN C E, JONES C A, FITZGERALD D C, et al. CNS remyelination and the innate immune system [J]. Front Cell Develop Biol, 2016, 4:38. doi: 10.3389/fcell.2016.00038.
[21] GLASS C K, SAIJO K, WINNER B, et al. Mechanisms underlying inflammation in neurodegeneration [J]. Cell, 2010, 140(6): 918-934.
[22] TURNER B J, TALBOT K. Transgenics, toxicity and therapeutics in rodent models of mutant SOD1-mediated familial ALS [J]. Prog Neurobiol, 2008, 85(1): 94-134.
[23] HALL E D, OOSTVEEN J A, GURNEY M E. Relationship of microglial and astrocytic activation to disease onset and progression in a transgenic model of familial ALS [J]. Glia, 1998, 23(3): 249-256.
[24] KOMINE O, YAMANAKA K. Neuroinflammation in motor neuron disease [J]. Nagoya J Med Sci, 2015, 77(4): 537-549.
[25] TAI Y F, PAVESE N, GERHARD A, et al. Imaging microglial activation in Huntington′s disease [J]. Brain Res Bull, 2007, 72(2-3): 148-151.
[26] ROSAS H D, LEE S Y, BENDER A C, et al. Altered white matter microstructure in the corpus callosum in Huntington′s disease: implications for cortical "disconnection" [J]. Neuro Image, 2010, 49(4): 2995-3004.
[27] CROTTI A, GLASS C K. The choreography of neuroinflammation in Huntington′s disease [J]. Trends Immunol, 2015, 36(6): 364-373.
[28] SHI X M,RUAN Y Y,ZHANG L, et al. Effects of safflower yellow on inflammation reaction in the cortical of APP/PS1 transgenic mice [J]. Chin Pharm J (中国药学杂志), 2016, 51(7): 550-553.
[29] NIE X Q,ZHANG D D,ZHANG H. Inflammation, insulin resistance and traditional chinese medicine treatment of diabetes mellitus [J]. Chin Pharm J (中国药学杂志), 2017, 52(1): 1-7.
[30] GONG Q H, FEI L, FENG J, et al. Resveratrol attenuates neuroinflammation-mediated cognitive deficits in rats [J]. J Health Sci, 2010, 56(6): 655-663.
[31] CAPIRALLA H, VINGTDEUX V, ZHAO H, et al. Resveratrol mitigates lipopolysaccharide- and Abeta-mediated microglial inflammation by inhibiting the TLR4/NF-kappaB/STAT signaling cascade [J]. J Neurochem, 2012, 120(3): 461-472.
[32] CHEN J, ZHOU Y, MUELLER-STEINER S, et al. SIRT1 protects against microglia-dependent amyloid-beta toxicity through inhibiting NF-kappaB signaling [J]. J Biol Chem, 2005, 280(48): 40364-40374.
[33] JIN F, WU Q, LU Y F, et al. Antagonistic effects of resveratrol on Parkinson′s disease model rats [J]. Acta Acad Med Zunyi (遵义医学院学报), 2009, 32(1): 10-12.
[34] JIN F, WU Q, LU Y F, et al. Neuroprotective effect of resveratrol on 6-OHDA-induced Parkinson′s disease in rats [J]. Eur J Pharmacol, 2008, 600(1-3): 78-82.
[35] ZHANG F, SHI J S, ZHOU H, et al. Resveratrol protects dopamine neurons against lipopolysaccharide-induced neurotoxicity through its anti-inflammatory actions [J]. Mol Pharmacol, 2010, 78(3): 466-477.
[36] MANCUSO R, DEL VALLE J, MODOL L, et al. Resveratrol improves motoneuron function and extends survival in SOD1(G93A)ALS mice [J]. Neurotherapeutics, 2014, 11(2): 419-432.
[37] NAIA L, ROSENSTOCK T R, OLIVEIRA A M, et al. Comparative mitochondrial-based protective effects of resveratrol and nicotinamide in Huntington′s disease models [J]. Mol Neurobiol, 2017,54(7):5385-5399.
[38] GHAIAD H R, NOOH M M, EL-SAWALHI M M, et al. Resveratrol promotes remyelination in cuprizone model of multiple sclerosis: biochemical and histological study [J]. Mol Neurobiol, 2017, 54(5):3219-3229.
[39] RADKAR V, LAU-CAM C, HARDEJ D, et al. The role of surface receptor stimulation on the cytotoxicity of resveratrol to macrophages [J]. Food Chem Toxicol, 2008, 46(12): 3664-3670.
[40] YOUN H S, LEE J Y, FITZGERALD K A, et al. Specific inhibition of MyD88-independent signaling pathways of TLR3 and TLR4 by resveratrol: molecular targets are TBK1 and RIP1 in TRIF complex [J]. J Immunol (Baltimore), 2005, 175(5): 3339-3346.
[41] JAKUS P B, KALMAN N, ANTUS C, et al. TRAF6 is functional in inhibition of TLR4-mediated NF-kappaB activation by resveratrol [J]. J Nutr Biochem, 2013, 24(5): 819-823.
[42] FENG Y, CUI Y, GAO J L, et al. Resveratrol attenuates neuronal autophagy and inflammatory injury by inhibiting the TLR4/NF-kappaB signaling pathway in experimental traumatic brain injury [J]. Int J Mol Med, 2016, 37(4): 921-930.
[43] JUNTTILA M R, LI S P, WESTERMARCK J. Phosphatase-mediated crosstalk between MAPK signaling pathways in the regulation of cell survival [J]. FASEB J, 2008, 22(4): 954-965.
[44] MATSUZAWA A, SAEGUSA K, NOGUCHI T, et al. ROS-dependent activation of the TRAF6-ASK1-p38 pathway is selectively required for TLR4-mediated innate immunity [J]. Nat Immunol, 2005, 6(6): 587-592.
[45] PAWATE S, SHEN Q, FAN F, et al. Redox regulation of glial inflammatory response to lipopolysaccharide and interferongamma [J]. J Neurosci Res, 2004, 77(4): 540-551.
[46] ZHONG L M, ZONG Y, SUN L, et al. Resveratrol inhibits inflammatory responses via the mammalian target of rapamycin signaling pathway in cultured LPS-stimulated microglial cells [J]. PLoS One, 2012, 7(2): e32195.
[47] OKAWARA M, KATSUKI H, KURIMOTO E, et al. Resveratrol protects dopaminergic neurons in midbrain slice culture from multiple insults [J]. Biochem Pharmacol, 2007, 73(4): 550-560.
[48] YE J, LIU Z, WEI J, et al. Protective effect of SIRT1 on toxicity of microglial-derived factors induced by LPS to PC12 cells via the p53-caspase-3-dependent apoptotic pathway [J]. Neurosci Lett, 2013, 553(8):72-77.
[49] JIN F, WU Q, LU Y F, et al. Protective effect of resveratrol on Parkinson′s disease rats and mechanism research [J]. Acta Acad Med Zunyi (遵义医学院学报), 2009, 32(3): 222-224.
[50] SALMINEN A, HYTTINEN J M, KAARNIRANTA K. AMP-activated protein kinase inhibits NF-kappaB signaling and inflammation: impact on healthspan and lifespan [J]. J Mol Med, 2011, 89(7): 667-676.
[51] YI C O, JEON B T, SHIN H J, et al. Resveratrol activates AMPK and suppresses LPS-induced NF-kappaB-dependent COX-2 activation in RAW 264.7 macrophage cells [J]. Anatomy Cell Biol, 2011, 44(3): 194-203.
[52] PARK S J, AHMAD F, PHILP A, et al. Resveratrol ameliorates aging-related metabolic phenotypes by inhibiting cAMP phosphodiesterases [J]. Cell, 2012, 148(3): 421-433.
[53] JIN F, GONG Q H, XU Y S, et al. Icariin, a phosphodiesterase-5 inhibitor, improves learning and memory in APP/PS1 transgenic mice by stimulation of NO/cGMP signalling [J]. Int J Neuropsychopharmacol, 2014, 17(6): 871-881.
[54] DELL′AGLI M, GALLI G V, VRHOVSEK U, et al. In vitro inhibition of human cGMP-specific phosphodiesterase-5 by polyphenols from red grapes [J]. J Agricul Food Chem, 2005, 53(6): 1960-1965.
[55] CHUNG J H. Metabolic benefits of inhibiting cAMP-PDEs with resveratrol [J]. Adipocyte, 2012, 1(4): 256-258.
[56] WANG C M, CHENG Y F, WU J G, et al. The new PDE4 inhibitor Roflupram ameliorated cognitive deficits and neuroinflammation in a rat model of Alzheimer′s disease [J]. Chin Pharmacol Bull (中国药理学通报), 2015, 31(3): 327-333.
[57] SCHAFER D, LEHRMAN E, KAUTZMAN A, et al. Microglia sculpt postnatal neural circuits in an activity and complement-dependent manner [J]. Neuron, 2012, 74(4): 691-705.
[58] YAMAMOTO T, TAMAKI K, SHIRAKAWA K, et al. Cardiac Sirt1 mediates the cardioprotective effect of caloric restriction by suppressing local complement system activation after ischemia-reperfusion [J]. Am J Physiol Heart Circul Physiol, 2016, 310(8):1003-1014.
[59] SONG L, SONG W, SCHIPPER H M. Astroglia overexpressing heme oxygenase-1 predispose co-cultured PC12 cells to oxidative injury [J]. J Neurosci Res, 2007, 85(10): 2186-2195.
[60] JIN F, JIN H, SHI J S, et al. Effects of resveratrol on expression of iNOS mRNA and HO-1 mRNA of 6-OHDA induced chronic Parkinson′s disease rats [J]. Chin J New Clin Rem (中国新药与临床杂志), 2012, 31(1): 42-46.
[61] DILSHARA M G, LEE K T, KIM H J, et al. Anti-inflammatory mechanism of alpha-viniferin regulates lipopolysaccharide-induced release of proinflammatory mediators in BV2 microglial cells [J]. Cell Immunol, 2014, 290(1): 21-29.
[62] STEELE M L, FULLER S, PATEL M, et al. Effect of Nrf2 activators on release of glutathione, cysteinylglycine and homocysteine by human U373 astroglial cells [J]. Redox Biol, 2013, 1(1):441-445.
[63] CAHILL-SMITH S, LI J M. Oxidative stress, redox signalling and endothelial dysfunction in ageing-related neurodegenerative diseases: a role of NADPH oxidase 2 [J]. Br J Clin Pharmacol, 2014, 78(3): 441-453.
[64] CHENG P W, HO W Y, SU Y T, et al. Resveratrol decreases fructose-induced oxidative stress, mediated by NADPH oxidase via an AMPK-dependent mechanism [J]. Br J Pharmacol, 2014, 171(11): 2739-2750.

基金

国家自然科学基金资助项目(81660599,81360311);遵义医学院项目资助(2013F-686,F-738);贵州省中医药管理局项目资助(D274,QZYY2010-59);贵州省科技厅项目资助(黔科合J字 [2009]2147号)

PDF(1378 KB)

Accesses

Citation

Detail

段落导航
相关文章

/